2012 年全国统一高考数学试卷(理科)(大纲版) 一、选择题(共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中, 只有一项是符合题目要求的.) 1.(5 分)复数 A.2+i =( ) B.2﹣i C.1+2i D.1﹣2i 2.(5 分)已知集合 A={1,3, },B={1,m},A∪B=A,则 m 的值为( ) A.0 或 B.0 或 3 C.1 或 D.1 或 3 3.(5 分)椭圆的中心在原点,焦距为 4,一条准线为 x=﹣4,则该椭圆的方程 为( ) A. B. C. D. 4.(5 分)已知正四棱柱 ABCD﹣A1B1C1D1 中,AB=2,CC1=2 ,E 为 CC1 的中点 ,则直线 AC1 与平面 BED 的距离为( ) A.2 B. C. D.1 5.(5 分)已知等差数列{an}的前 n 项和为 Sn,a5=5,S5=15,则数列 的前 100 项和为( ) A. B. C. D. 6.(5 分)△ABC 中,AB 边的高为 CD,若 = , = , • =0,| |=1,| |=2 ,则 =( ) A. 7.(5 分)已知 α 为第二象限角, A.﹣ B.﹣ B. C. D. ,则 cos2α=( ) D. C. 8.(5 分)已知 F1、F2 为双曲线 C:x2﹣y2=2 的左、右焦点,点 P 在 C 上, |PF1|=2|PF2|,则 cos∠F1PF2=( ) A. B. C. D. 第 1 页(共 25 页) 9.(5 分)已知 x=lnπ,y=log52, A.x<y<z B.z<x<y ,则( ) C.z<y<x D.y<z<x 10.(5 分)已知函数 y=x3﹣3x+c 的图象与 x 轴恰有两个公共点,则 c=( ) A.﹣2 或 2 B.﹣9 或 3 C.﹣1 或 1 D.﹣3 或 1 11.(5 分)将字母 a,a,b,b,c,c 排成三行两列,要求每行的字母互不相 同,每列的字母也互不相同,则不同的排列方法共有( ) A.12 种 B.18 种 C.24 种 D.36 种 12.(5 分)正方形 ABCD 的边长为 1,点 E 在边 AB 上,点 F 在边 BC 上, ,动点 P 从 E 出发沿直线向 F 运动,每当碰到正方形的边时反弹, 反弹时反射角等于入射角,当点 P 第一次碰到 E 时,P 与正方形的边碰撞的次 数为( ) A.16 B.14 C.12 D.10 二、填空题:本大题共 4 小题,每小题 5 分,共 20 分,把答案填在题中横线上 .(注意:在试题卷上作答无效) 13.(5 分)若 x,y 满足约束条件 则 z=3x﹣y 的最小值为 . 14.(5 分)当函数 y=sinx﹣ cosx(0≤x<2π)取得最大值时,x= . 15.(5 分)若 的展开式中第 3 项与第 7 项的二项式系数相等,则该展 开式中 的系数为 . 16.(5 分)三棱柱 ABC﹣A1B1C1 中,底面边长和侧棱长都相等,∠BAA1=∠ CAA1=60°,则异面直线 AB1 与 BC1 所成角的余弦值为 . 三.解答题:本大题共 6 小题,共 70 分,解答应写出文字说明,证明过程或演算 步骤. 17.(10 分)△ABC 的内角 A、B、C 的对边分别为 a、b、c,已知 cos(A﹣C) 第 2 页(共 25 页) +cosB=1,a=2c,求 C. 18.(12 分)如图,四棱锥 P﹣ABCD 中,底面 ABCD 为菱形,PA⊥底面 ABCD, ,PA=2,E 是 PC 上的一点,PE=2EC. (Ⅰ)证明:PC⊥平面 BED; (Ⅱ)设二面角 A﹣PB﹣C 为 90°,求 PD 与平面 PBC 所成角的大小. 19.(12 分)乒乓球比赛规则规定:一局比赛,双方比分在 10 平前,一方连续 发球 2 次后,对方再连续发球 2 次,依次轮换.每次发球,胜方得 1 分,负 方得 0 分.设在甲、乙的比赛中,每次发球,发球方得 1 分的概率为 0.6,各 次发球的胜负结果相互独立.甲、乙的一局比赛中,甲先发球. (Ⅰ)求开始第 4 次发球时,甲、乙的比分为 1 比 2 的概率; (Ⅱ)ξ 表示开始第 4 次发球时乙的得分,求 ξ 的期望. 第 3 页(共 25 页) 20.(12 分)设函数 f(x)=ax+cosx,x∈[0,π]. (Ⅰ)讨论 f(x)的单调性; (Ⅱ)设 f(x)≤1+sinx,求 a 的取值范围. 21.(12 分)已知抛物线 C:y=(x+1)2 与圆 (r>0) 有一个公共点 A,且在 A 处两曲线的切线为同一直线 l. (Ⅰ)求 r; (Ⅱ)设 m,n 是异于 l 且与 C 及 M 都相切的两条直线,m,n 的交点为 D,求 D 到 l 的距离. 22.(12 分)函数 f(x)=x2﹣2x﹣3,定义数列{ xn}如下:x1=2,xn+1 是过两点 P (4,5),Qn( xn,f( xn))的直线 PQn 与 x 轴交点的横坐标. (Ⅰ)证明:2≤xn<xn+1<3; (Ⅱ)求数列{ xn}的通项公式. 第 4 页(共 25 页) 2012 年全国统一高考数学试卷(理科)(大纲版) 参考答案与试题解析 一、选择题(共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中, 只有一项是符合题目要求的.) 1.(5 分)复数 A.2+i =( ) B.2﹣i C.1+2i D.1﹣2i 【考点】A5:复数的运算.菁优网版权所有 【专题】11:计算题. 【分析】把 的分子分母都乘以分母的共轭复数,得 ,由此 利用复数的代数形式的乘除运算,能求出结果. 【解答】解: ===1+2i. 故选:C. 【点评】本题考查复数的代数形式的乘除运算,是基础题.解题时要认真审题, 仔细解答. 2.(5 分)已知集合 A={1,3, },B={1,m},A∪B=A,则 m 的值为( ) A.0 或 B.0 或 3 C.1 或 D.1 或 3 【考点】1C:集合关系中的参数取值问题.菁优网版权所有 【专题】5J:集合. 【分析】由题设条件中本题可先由条件 A∪B=A 得出 B⊆A,由此判断出参数 m 可能的取值,再进行验证即可得出答案选出正确选项. 第 5 页(共 25 页) 【解答】解:由题意 A∪B=A,即 B⊆A,又 ∴m=3 或 m= ,解得 m=3 或 m=0 及 m=1, ,B={1,m}, 验证知,m=1 不满足集合的互异性,故 m=0 或 m=3 即为所求, 故选:B. 【点评】本题考查集合中参数取值问题,解题的关键是将条件 A∪B=A 转化为 B⊆ A,再由集合的包含关系得出参数所可能的取值. 3.(5 分)椭圆的中心在原点,焦距为 4,一条准线为 x=﹣4,则该椭圆的方程 为( ) A. C. B. D. 【考点】K3:椭圆的标准方程;K4:椭圆的性质.菁优网版权所有 【专题】11:计算题. 【分析】确定椭圆的焦点在 x 轴上,根据焦距为 4,一条准线为 x=﹣4,求出几 何量,即可求得椭圆的方程. 【解答】解:由题意,椭圆的焦点在 x 轴上,且 ∴c=2,a2=8 ∴b2=a2﹣c2=4 ∴椭圆的方程为 故选:C. 【点评】本题考查椭圆的标准方程,考查椭圆的几何性质,属于基础题. 4.(5 分)已知正四棱柱 ABCD﹣A1B1C1D1 中,AB=2,CC1=2 ,E 为 CC1 的中点 第 6 页(共 25 页) ,则直线 AC1 与平面 BED 的距离为( ) A.2 B. C. D.1 【考点】MI:直线与平面所成的角.菁优网版权所有 【专题】11:计算题. 【分析】先利用线面平行的判定定理证明直线 C1A∥平面 BDE,再将线面距离转 化为点面距离,最后利用等体积法求点面距离即可 【解答】解:如图:连接 AC,交 BD 于 O,在三角形 CC1A 中,易证 OE∥C1A, 从而 C1A∥平面 BDE, ∴直线 AC1 与平面 BED 的距离即为点 A 到平面 BED 的距离,设为 h, 在三棱锥 E﹣ABD 中,VE﹣ABD= S△ABD×EC= × ×2×2× =在三棱锥 A﹣BDE 中,BD=2 ,BE= ,DE= ,∴S△EBD= ×2 ∴VA﹣BDE= ×S△EBD×h= ×2 ×h= ×=2 ∴h=1 故选:D. 【点评】本题主要考查了线面平行的判定,线面距离与点面距离的转化,三棱锥 的体积计算方法,等体积法求点面距离的技巧,属基础题 5.(5 分)已知等差数列{an}的前 n 项和为 Sn,a5=5,S5=15,则数列 的前 100 项和为( ) A. B. C. D. 第 7 页(共 25 页) 【考点】85:等差数列的前 n 项和;8E:数列的求和.菁优网版权所有 【专题】11:计算题. 【分析】由等差数列的通项公式及求和公式,结合已知可求 a1,d,进而可求 an ,代入可得 ==,裂项可求和 【解答】解:设等差数列的公差为 d 由题意可得, 解方程可得,d=1,a1=1 由等差数列的通项公式可得,an=a1+(n﹣1)d=1+(n﹣1)×1=n ∴===1﹣ =故选:A. 【点评】本题主要考查了等差数列的通项公式及求和公式的应用,及数列求和的 裂项求和方法的应用,属于基础试题 6.(5 分)△ABC 中,AB 边的高为 CD,若 = , = , • =0,| |=1,| |=2 ,则 =( ) A. B. C. D. 【考点】9Y:平面向量的综合题.菁优网版权所有 【分析】由题意可得,CA⊥CB,CD⊥AB,由射影定理可得,AC2=AD•AB 可求 AD ,进而可求 ,从而可求 与的关系,进而可求 【解答】解:∵ • =0, ∴CA⊥CB ∵CD⊥AB 第 8 页(共 25 页) ∵| |=1,| |=2 ∴AB= 由射影定理可得,AC2=AD•AB ∴∴∴==故选:D. 【点评】本题主要考查了直角三角形的射影定理的应用,向量的基本运算的应用 ,向量的数量积的性质的应用. 7.(5 分)已知 α 为第二象限角, A.﹣ B.﹣ ,则 cos2α=( ) D. C. 【考点】GG:同角三角函数间的基本关系;GS:二倍角的三角函数.菁优网版权所有 【专题】56:三角函数的求值. 【分析】由 α 为第二象限角,可知 sinα>0,cosα<0,从而可求得 sinα﹣cosα= ,利用 cos2α=﹣(sinα﹣cosα)(sinα+cosα)可求得 cos2α 【解答】解:∵sinα+cosα= ,两边平方得:1+sin2α= , ∴sin2α=﹣ ,① ∴(sinα﹣cosα)2=1﹣sin2α= , ∵α 为第二象限角, ∴sinα>0,cosα<0, 第 9 页(共 25 页) ∴sinα﹣cosα= ,② ∴cos2α=﹣(sinα﹣cosα)(sinα+cosα) =(﹣ =﹣ )× .故选:A. 【点评】本题考查同角三角函数间的基本关系,突出二倍角的正弦与余弦的应用 ,求得 sinα﹣cosα= 是关键,属于中档题. 8.(5 分)已知 F1、F2 为双曲线 C:x2﹣y2=2 的左、右焦点,点 P 在 C 上, |PF1|=2|PF2|,则 cos∠F1PF2=( ) A. B. C. D. 【考点】KC:双曲线的性质.菁优网版权所有 【专题】11:计算题. 【分析】根据双曲线的定义,结合|PF1|=2|PF2|,利用余弦定理,即可求 cos∠ F1PF2 的值. 【解答】解:将双曲线方程 x2﹣y2=2 化为标准方程 c=2, ﹣=1,则 a= ,b= ,设|PF1|=2|PF2|=2m,则根据双曲线的定义,|PF1|﹣|PF2|=2a 可得 m=2 ,∴|PF1|=4 ,|PF2|=2 ∵|F1F2|=2c=4, ,∴cos∠F1PF2= 故选:C. === . 【点评】本题考查双曲线的性质,考查双曲线的定义,考查余弦定理的运用,属 于中档题. 第 10 页(共 25 页) 9.(5 分)已知 x=lnπ,y=log52, ,则( ) A.x<y<z B.z<x<y C.z<y<x D.y<z<x 【考点】72:不等式比较大小.菁优网版权所有 【专题】11:计算题;16:压轴题. 【分析】利用 x=lnπ>1,0<y=log52< ,1>z= > ,即可得到答案. 【解答】解:∵x=lnπ>lne=1, 0<log52<log5 = ,即 y∈(0, ); 1=e0> =>= ,即 z∈( ,1), ∴y<z<x. 故选:D. 【点评】本题考查不等式比较大小,掌握对数函数与指数函数的性质是解决问题 的关键,属于基础题. 10.(5 分)已知函数 y=x3﹣3x+c 的图象与 x 轴恰有两个公共点,则 c=( ) A.﹣2 或 2 B.﹣9 或 3 C.﹣1 或 1 D.﹣3 或 1 【考点】53:函数的零点与方程根的关系;6D:利用导数研究函数的极值.菁优网版权所有 【专题】11:计算题. 【分析】求导函数,确定函数的单调性,确定函数的极值点,利用函数 y=x3﹣3x+c 的图象与 x 轴恰有两个公共点,可得极大值等于 0 或极小值等于 0,由此可求 c 的值. 【解答】解:求导函数可得 y′=3(x+1)(x﹣1), 令 y′>0,可得 x>1 或 x<﹣1;令 y′<0,可得﹣1<x<1; 第 11 页(共 25 页) ∴函数在(﹣∞,﹣1),(1,+∞)上单调增,(﹣1,1)上单调减, ∴函数在 x=﹣1 处取得极大值,在 x=1 处取得极小值. ∵函数 y=x3﹣3x+c 的图象与 x 轴恰有两个公共点, ∴极大值等于 0 或极小值等于 0. ∴1﹣3+c=0 或﹣1+3+c=0, ∴c=﹣2 或 2. 故选:A. 【点评】本题考查导数知识的运用,考查函数的单调性与极值,解题的关键是利 用极大值等于 0 或极小值等于 0. 11.(5 分)将字母 a,a,b,b,c,c 排成三行两列,要求每行的字母互不相 同,每列的字母也互不相同,则不同的排列方法共有( ) A.12 种 B.18 种 C.24 种 D.36 种 【考点】D9:排列、组合及简单计数问题.菁优网版权所有 【专题】11:计算题;16:压轴题. 【分析】由题意,可按分步原理计数,对列的情况进行讨论比对行讨论更简洁. 【解答】解:由题意,可按分步原理计数, 首先,对第一列进行排列,第一列为 a,b,c 的全排列,共有 种, 再分析第二列的情况,当第一列确定时,第二列第一行只能有 2 种情况, 当第二列一行确定时,第二列第 2,3 行只能有 1 种情况; 所以排列方法共有: ×2×1×1=12 种, 故选:A. 【点评】本题若讨论三行每一行的情况,讨论情况较繁琐,而对两列的情况进行 分析会大大简化解答过程. 12.(5 分)正方形 ABCD 的边长为 1,点 E 在边 AB 上,点 F 在边 BC 上, 第 12 页(共 25 页) ,动点 P 从 E 出发沿直线向 F 运动,每当碰到正方形的边时反弹, 反弹时反射角等于入射角,当点 P 第一次碰到 E 时,P 与正方形的边碰撞的次 数为( ) A.16 B.14 C.12 D.10 【考点】IG:直线的一般式方程与直线的性质;IQ:与直线关于点、直线对称的 直线方程.菁优网版权所有 【专题】13:作图题;16:压轴题. 【分析】通过相似三角形,来确定反射后的点的落的位置,结合图象分析反射的 次数即可. 【解答】解:根据已知中的点 E,F 的位置,可知第一次碰撞点为 F,在反射的 过程中,直线是平行的,利用平行关系及三角形的相似可得第二次碰撞点为 G ,且 CG= ,第二次碰撞点为 H,且 DH= ,作图, 可以得到回到 E 点时,需要碰撞 14 次即可. 故选:B. 【点评】本题主要考查了反射原理与三角形相似知识的运用.通过相似三角形, 来确定反射后的点的落的位置,结合图象分析反射的次数即可,属于难题. 二、填空题:本大题共 4 小题,每小题 5 分,共 20 分,把答案填在题中横线上 第 13 页(共 25 页) .(注意:在试题卷上作答无效) 13.(5 分)若 x,y 满足约束条件 则 z=3x﹣y 的最小值为 ﹣1 . 【考点】7C:简单线性规划.菁优网版权所有 【专题】11:计算题. 【分析】作出不等式组表示的平面区域,由 z=3x﹣y 可得 y=3x﹣z,则﹣z 表示直 线 3x﹣y﹣z=0 在 y 轴上的截距,截距越大 z 越小,结合图形可求 【解答】解:作出不等式组 表示的平面区域,如图所示 由 z=3x﹣y 可得 y=3x﹣z,则﹣z 表示直线 3x﹣y﹣z=0 在 y 轴上的截距,截距越 大 z 越小 结合图形可知,当直线 z=3x﹣y 过点 C 时 z 最小 由可得 C(0,1),此时 z=﹣1 故答案为:﹣1 第 14 页(共 25 页) 【点评】本题主要考查了线性规划的简单应用,解题的关键是明确目标函数中 z 的几何意义,属于基础试题 14.(5 分)当函数 y=sinx﹣ cosx(0≤x<2π)取得最大值时,x= . 【考点】GP:两角和与差的三角函数;HW:三角函数的最值.菁优网版权所有 【专题】11:计算题;16:压轴题. 【分析】利用辅助角公式将 y=sinx﹣ cosx 化为 y=2sin(x﹣ )(0≤x<2π) ,即可求得 y=sinx﹣ cosx(0≤x<2π)取得最大值时 x 的值. 【解答】解:∵y=sinx﹣ cosx=2( sinx﹣ cosx)=2sin(x﹣ ). ∵0≤x<2π, ∴﹣ ≤x﹣ ∴ymax=2,此时 x﹣ ∴x= 故答案为: <,=,..【点评】本题考查三角函数的最值两与角和与差的正弦函数,着重考查辅助角公 式的应用与正弦函数的性质,将 y=sinx﹣ cosx(0≤x<2π)化为 y=2sin( x﹣ )(0≤x<2π)是关键,属于中档题. 15.(5 分)若 的展开式中第 3 项与第 7 项的二项式系数相等,则该展 开式中 的系数为 56 . 【考点】DA:二项式定理.菁优网版权所有 【专题】11:计算题;16:压轴题. 【分析】根据第 2 项与第 7 项的系数相等建立等式,求出 n 的值,根据通项可求 第 15 页(共 25 页) 满足条件的系数 【解答】解:由题意可得, ∴n=8 展开式的通项 =令 8﹣2r=﹣2 可得 r=5 此时系数为 =56 故答案为:56 【点评】本题主要考查了二项式系数的性质,以及系数的求解,解题的关键是根 据二项式定理写出通项公式,同时考查了计算能力. 16.(5 分)三棱柱 ABC﹣A1B1C1 中,底面边长和侧棱长都相等,∠BAA1=∠ CAA1=60°,则异面直线 AB1 与 BC1 所成角的余弦值为 . 【考点】LM:异面直线及其所成的角.菁优网版权所有 【专题】11:计算题;16:压轴题. 【分析】先选一组基底,再利用向量加法和减法的三角形法则和平行四边形法则 将两条异面直线的方向向量用基底表示,最后利用夹角公式求异面直线 AB1 与 BC1 所成角的余弦值即可 【解答】解:如图,设 = , ,,棱长均为 1, 则∵∴== , = , =,=( )•( )= ﹣++﹣+﹣++= ﹣1+ +1=1 ||= |= ==|==第 16 页(共 25 页) ∴cos< ,>= ==∴异面直线 AB1 与 BC1 所成角的余弦值为 【点评】本题主要考查了空间向量在解决立体几何问题中的应用,空间向量基本 定理,向量数量积运算的性质及夹角公式的应用,有一定的运算量 三.解答题:本大题共 6 小题,共 70 分,解答应写出文字说明,证明过程或演算 步骤. 17.(10 分)△ABC 的内角 A、B、C 的对边分别为 a、b、c,已知 cos(A﹣C) +cosB=1,a=2c,求 C. 【考点】GL:三角函数中的恒等变换应用;HP:正弦定理.菁优网版权所有 【专题】11:计算题. 【分析】由 cos(A﹣C)+cosB=cos(A﹣C)﹣cos(A+C)=1,可得 sinAsinC= , 由 a=2c 及正弦定理可得 sinA=2sinC,联立可求 C 【解答】解:由 B=π﹣(A+C)可得 cosB=﹣cos(A+C) ∴cos(A﹣C)+cosB=cos(A﹣C)﹣cos(A+C)=2sinAsinC=1 ∴sinAsinC= ① 由 a=2c 及正弦定理可得 sinA=2sinC② ①②联立可得, ∵0<C<π 第 17 页(共 25 页) ∴sinC= a=2c 即 a>c 【点评】本题主要考查了两角和与差的余弦公式及正弦定理的应用,属于基础试 题 18.(12 分)如图,四棱锥 P﹣ABCD 中,底面 ABCD 为菱形,PA⊥底面 ABCD, ,PA=2,E 是 PC 上的一点,PE=2EC. (Ⅰ)证明:PC⊥平面 BED; (Ⅱ)设二面角 A﹣PB﹣C 为 90°,求 PD 与平面 PBC 所成角的大小. 【考点】LW:直线与平面垂直;MI:直线与平面所成的角;MM:向量语言表 述线面的垂直、平行关系.菁优网版权所有 【专题】11:计算题. 【分析】(I)先由已知建立空间直角坐标系,设 D( ,b,0),从而写出相 关点和相关向量的坐标,利用向量垂直的充要条件,证明 PC⊥BE,PC⊥DE, 从而利用线面垂直的判定定理证明结论即可; (II)先求平面 PAB 的法向量,再求平面 PBC 的法向量,利用两平面垂直的性质 ,即可求得 b 的值,最后利用空间向量夹角公式即可求得线面角的正弦值, 进而求得线面角 第 18 页(共 25 页) 【解答】解:(I)以 A 为坐标原点,建立如图空间直角坐标系 A﹣xyz, 设 D( ,b,0),则 C(2 ,0,0),P(0,0,2),E( B( ,﹣b,0) ,0, ), ∴∴=(2 ,0,﹣2), =( ,b, ),=( ,﹣b, ) = ﹣ =0, =0 ••∴PC⊥BE,PC⊥DE,BE∩DE=E ∴PC⊥平面 BED (II) =(0,0,2), =( ,﹣b,0) 设平面 PAB 的法向量为 =(x,y,z),则 取 =(b, ,0) 设平面 PBC 的法向量为 =(p,q,r),则 取 =(1,﹣ ,)∵平面 PAB⊥平面 PBC,∴ • =b﹣ =0.故 b= ∴ =(1,﹣1, ), =(﹣ ,﹣ ,2) ∴cos< ,>= =设 PD 与平面 PBC 所成角为 θ,θ∈[0, ],则 sinθ= ∴θ=30° ∴PD 与平面 PBC 所成角的大小为 30° 第 19 页(共 25 页) 【点评】本题主要考查了利用空间直角坐标系和空间向量解决立体几何问题的 一般方法,线面垂直的判定定理,空间线面角的求法,有一定的运算量,属 中档题 19.(12 分)乒乓球比赛规则规定:一局比赛,双方比分在 10 平前,一方连续 发球 2 次后,对方再连续发球 2 次,依次轮换.每次发球,胜方得 1 分,负 方得 0 分.设在甲、乙的比赛中,每次发球,发球方得 1 分的概率为 0.6,各 次发球的胜负结果相互独立.甲、乙的一局比赛中,甲先发球. (Ⅰ)求开始第 4 次发球时,甲、乙的比分为 1 比 2 的概率; (Ⅱ)ξ 表示开始第 4 次发球时乙的得分,求 ξ 的期望. 【考点】C8:相互独立事件和相互独立事件的概率乘法公式;CH:离散型随机 变量的期望与方差.菁优网版权所有 【专题】15:综合题. 【分析】(Ⅰ)记 Ai 表示事件:第 1 次和第 2 次这两次发球,甲共得 i 分,i=0, 1,2;A 表示事件:第 3 次发球,甲得 1 分;B 表示事件:开始第 4 次发球, 甲、乙的比分为 1 比 2,则 B=A0A+A1 ,根据 P(A)=0.4,P(A0)=0.16,P (A1)=2×0.6×0.4=0.48,即可求得结论; (Ⅱ)P(A2)=0.62=0.36,ξ 表示开始第 4 次发球时乙的得分,可取 0,1,2,3 ,计算相应的概率,即可求得 ξ 的期望. 【解答】解:(Ⅰ)记 Ai 表示事件:第 1 次和第 2 次这两次发球,甲共得 i 分, 第 20 页(共 25 页) i=0,1,2;A 表示事件:第 3 次发球,甲得 1 分; B 表示事件:开始第 4 次发球,甲、乙的比分为 1 比 2,则 B=A0A+A1 ∵P(A)=0.4,P(A0)=0.16,P(A1)=2×0.6×0.4=0.48 ∴P(B)=0.16×0.4+0.48×(1﹣0.4)=0.352; (Ⅱ)P(A2)=0.62=0.36,ξ 表示开始第 4 次发球时乙的得分,可取 0,1,2,3 P(ξ=0)=P(A2A)=0.36×0.4=0.144 P(ξ=2)=P(B)=0.352 P(ξ=3)=P(A0 )=0.16×0.6=0.096 P(ξ=1)=1﹣0.144﹣0.352﹣0.096=0.408 ∴ξ 的期望 Eξ=1×0.408+2×0.352+3×0.096=1.400. 【点评】本题考查相互独立事件的概率,考查离散型随机变量的期望,确定变量 的取值,计算相应的概率是关键. 20.(12 分)设函数 f(x)=ax+cosx,x∈[0,π]. (Ⅰ)讨论 f(x)的单调性; (Ⅱ)设 f(x)≤1+sinx,求 a 的取值范围. 【考点】6B:利用导数研究函数的单调性;6E:利用导数研究函数的最值.菁优网版权所有 【专题】15:综合题. 【分析】(Ⅰ)求导函数,可得 f’(x)=a﹣sinx,x∈[0.π],sinx∈[0,1],对 a 进行分类讨论,即可确定函数的单调区间; (Ⅱ)由 f(x)≤1+sinx 得 f(π)≤1,aπ﹣1≤1,可得 a≤ ,构造函数g(x )=sinx﹣ ;② (0≤x ),可得 g(x)≥0(0≤x ),再考虑:①0≤ x,即可得到结论. 【解答】解:(Ⅰ)求导函数,可得 f’(x)=a﹣sinx,x∈[0,π],sinx∈[0,1]; 当 a≤0 时,f’(x)≤0 恒成立,f(x)单调递减;当 a≥1 时,f’(x)≥0 恒成 立,f(x)单调递增; 第 21 页(共 25 页) 当 0<a<1 时,由 f’(x)=0 得 x1=arcsina,x2=π﹣arcsina 当 x∈[0,x1]时,sinx<a,f’(x)>0,f(x)单调递增 当 x∈[x1,x2]时,sinx>a,f’(x)<0,f(x)单调递减 当 x∈[x2,π]时,sinx<a,f’(x)>0,f(x)单调递增; (Ⅱ)由 f(x)≤1+sinx 得 f(π)≤1,aπ﹣1≤1,∴a≤ .令 g(x)=sinx﹣ (0≤x 时,g′(x)>0,当 ,∴g(x)≥0,即 ),则 g′(x)=cosx﹣ 当 x 时,g′(x)<0 ), ∵(0≤x 当 a≤ 时,有 ①当 0≤x ②当 时, 时, ,cosx≤1,所以 f(x)≤1+sinx; =1+ ≤1+sinx 综上,a≤ .【点评】本题考查导数知识的运用,考查函数的单调性,考查函数的最值,解题 的关键是正确求导,确定函数的单调性. 21.(12 分)已知抛物线 C:y=(x+1)2 与圆 (r>0) 有一个公共点 A,且在 A 处两曲线的切线为同一直线 l. (Ⅰ)求 r; (Ⅱ)设 m,n 是异于 l 且与 C 及 M 都相切的两条直线,m,n 的交点为 D,求 D 到 l 的距离. 【考点】IM:两条直线的交点坐标;IT:点到直线的距离公式;KJ:圆与圆锥曲 线的综合.菁优网版权所有 【专题】15:综合题;16:压轴题. 22【分析】(Ⅰ)设 A(x0,(x0+1) ),根据 y=(x+1) ,求出 l 的斜率,圆心 M (1, ),求得MA 的斜率,利用 l⊥MA 建立方程,求得 A 的坐标,即可求 第 22 页(共 25 页) 得 r 的值; 22(Ⅱ)设(t,(t+1))为 C 上一点,则在该点处的切线方程为 y﹣(t+1)=2( t+1)(x﹣t),即 y=2(t+1)x﹣t2+1,若该直线与圆 M 相切,则圆心 M 到 该切线的距离为 ,建立方程,求得t 的值,求出相应的切线方程,可得 D 的坐标,从而可求 D 到 l 的距离. 【解答】解:(Ⅰ)设 A(x0,(x0+1)2), ∵y=(x+1)2,y′=2(x+1) ∴l 的斜率为 k=2(x0+1) 当 x0=1 时,不合题意,所以 x0≠1 圆心 M(1, ),MA 的斜率 .∵l⊥MA,∴2(x0+1)× ∴x0=0,∴A(0,1), =﹣1 ∴r=|MA|= ;22(Ⅱ)设(t,(t+1))为 C 上一点,则在该点处的切线方程为 y﹣(t+1)=2( t+1)(x﹣t),即 y=2(t+1)x﹣t2+1 若该直线与圆 M 相切,则圆心 M 到该切线的距离为 ∴∴t2(t2﹣4t﹣6)=0 ∴t0=0,或 t1=2+ ,t2=2﹣ 抛物线 C 在点(ti,(ti+1)2)(i=0,1,2)处的切线分别为 l,m,n,其方程 分别为 y=2x+1①,y=2(t1+1)x﹣ ②﹣③:x= ②,y=2(t2+1)x﹣ ③第 23 页(共 25 页) 代入②可得:y=﹣1 ∴D(2,﹣1), ∴D 到 l 的距离为 【点评】本题考查圆与抛物线的综合,考查抛物线的切线方程,考查导数知识的 运用,考查点到直线的距离公式的运用,关键是确定切线方程,求得交点坐 标. 22.(12 分)函数 f(x)=x2﹣2x﹣3,定义数列{ xn}如下:x1=2,xn+1 是过两点 P (4,5),Qn( xn,f( xn))的直线 PQn 与 x 轴交点的横坐标. (Ⅰ)证明:2≤xn<xn+1<3; (Ⅱ)求数列{ xn}的通项公式. 【考点】8H:数列递推式;8I:数列与函数的综合.菁优网版权所有 【专题】15:综合题;16:压轴题. 【分析】(Ⅰ)用数学归纳法证明:①n=1 时,x1=2,直线 PQ1 的方程为 ,当 y=0 时,可得 ;②假设 n=k 时,结论成立,即 2≤xk<xk+1<3,直线 PQk+1 的方程为 ,当 y=0 时,可得 ,根据归纳假设 2≤xk<xk+1<3,可以证明 2≤xk+1<xk+2<3, 从而结论成立. (Ⅱ)由(Ⅰ),可得 ,构造 bn=xn﹣3,可得 是以﹣ 为 首项,5 为公比的等比数列,由此可求数列{ xn}的通项公式. 【解答】(Ⅰ)证明:①n=1 时,x1=2,直线 PQ1 的方程为 当 y=0 时,∴ ,∴2≤x1<x2<3; ② 假 设n=k 时 , 结 论 成 立 , 即2 ≤ xk < xk+1 < 3 , 直 线PQk+1 的 方 程 为 第 24 页(共 25 页) 当 y=0 时,∴ ∵2≤xk<xk+1<3,∴ ∴xk+1<xk+2 ∴2≤xk+1<xk+2<3 即 n=k+1 时,结论成立 由①②可知:2≤xn<xn+1<3; (Ⅱ)由(Ⅰ),可得 设 bn=xn﹣3,∴ ∴∴∴∴∴是以﹣ 为首项,5 为公比的等比数列 .【点评】本题考查数列的通项公式,考查数列与函数的综合,解题的关键是从函 数入手,确定直线方程,求得交点坐标,再利用数列知识解决. 第 25 页(共 25 页)
声明:如果本站提供的资源有问题或者不能下载,请点击页面底部的"联系我们";
本站提供的资源大部分来自网络收集整理,如果侵犯了您的版权,请联系我们删除。