2012年江苏高考数学试题及答案下载

2012年江苏高考数学试题及答案下载

  • 最近更新2022年10月14日



2012 年普通高等学校招生全国统一考试(江苏卷) 数学Ⅰ 参考公式: 1棱锥的体积V  Sh ,其中 S为底面积, h为高. 3一、填空题:本大题共 14小题,每小题 5分,共计 70分.请把答案填写在答题卡相应位置 上. 1.已知集合 A {1,2,4} ,B {2,4,6},则 A B  ▲ . ::2.某学校高一、高二、高三年级的学生人数之比为3 3 4,现用分层抽样的方法从该校高中三 个年级的学生中抽取容量为 50 的样本,则应从高二年级抽取 11 7i ▲名学生. 开始 3.设 a,bR ,a  bi  (i 为虚数单位),则 a  b 的值 1 2i 4.右图是一个算法流程图,则输出的 k 的值是 5.函数 f (x)  1 2log6 x 的定义域为 为▲ . k←1 ▲.N▲.k2-5k+4>0 k←k +1 6.现有 10 个数,它们能构成一个以 1 为首项, 3 为公比的 等比数列,若从这 10 个数中随机抽取一个数,则它小于 8 Y输出 k 的概率是 ▲ . 结束 (第 4 题) 7.如图,在长方体 ABCD ABC D1 中,AB  AD  3cm , AA  2cm , D11111C1 Acm3. B11则四棱锥 A  BB D D 的体积为 ▲11Dx2 y2 m2  4 C8.在平面直角坐标系 xOy 中,若双曲线 1的离心率 mAB(第 7 题) 为5,则 m 的值为 ▲ . FDCE9.如图,在矩形 ABCD 中, AB  2 ,BC  2,点 E 为 BC 的中点,    点 F 在边 CD 上,若 AB  AF  2 ,则 AE  BF 的值是 ▲ . 10.设 f (x) 是定义在 R 上且周期为 2 的函数,在区间[1,1]上, 2012年普通高等学校招生全国统一考试(江苏卷)数 学 Ⅰ BAax 1,1≤ x  0, 13    f (x)  其中 a,bR .若 f f ,bx  2     2  2  ,0≤ x ≤1, (第 9 题) x 1 则a  3b 的值为 ▲ . 64512 11.设 为锐角,若cos   ,则sin 2  的值为 ▲ . 12.在平面直角坐标系xOy 中,圆C 的方程为x2  y2 8x 15  0,若直线 y  kx  2上至少存 在一点,使得以该点为圆心,1 为半径的圆与圆 C 有公共点,则 k 的最大值是 ▲.13.已知函数 f (x)  x2  ax  b(a,bR) 的值域为[0, ) ,若关于 x 的不等式 f (x)  c 的解集为 (m,m  6) ,则实数 c 的值为 14 . 已 知 正 数a,b,c满 足 : 5c 3a≤b≤4c  a,clnb≥a  clnc, ▲.ba则的 取 值 范 围 是 ▲.二、解答题:本大题共 6小题,共计 90分.请在答题卡指定区域内作答,解答时应写出文字说 明、证明过程或演算步骤. 15.(本小题满分 14 分)    .在ABC 中,已知 AB  AC  3BA BC (1)求证: tan B  3tan A ;5(2)若 cosC  ,求 A 的值. 516.(本小题满分 14 分) 如图,在直三棱柱 ABC  A B C1 中, A B AC1 ,D,E 分别是棱BC ,CC1 上的点(点D 11111不同于点 C),且 AD  DE ,F 为 B C1 的中点. 1AC1 1F求证:(1)平面 ADE  平面 BCC1B ;1B1E(2)直线 A F // 平面 ADE. 1CADB2012年普通高等学校招生全国统一考试(江苏卷)数 学 Ⅰ (第 16 题) 17.(本小题满分 14 分) 如图,建立平面直角坐标系 xOy,x 轴在地平面上,y 轴垂直于地平面,单位长度为 1 千 1米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程 y  kx  (1 k2 )x2 (k  0) 表示的 20 曲线上,其中 k 与发射方向有关.炮的射程是指炮弹落地点的横坐标. (1)求炮的最大射程; (2)设在第一象限有一飞行物(忽略其大小),其飞行高度为 3.2 千米,试问它的横坐标 a 不超过多少时,炮弹可以击中它?请说明理由. y(千米) Ox(千米) (第 17 题) 18.(本小题满分 16 分) 若函数 y  f (x) 在 x=x0 取得极大值或者极小值则 x=x0 是 y  f (x) 的极值点 已知 a,b 是实数,1 和 1是函数 f (x)  x3  ax2  bx 的两个极值点. (1)求 a 和 b 的值; (2)设函数 g(x) 的导函数 g (x)  f (x)  2 ,求 g(x) 的极值点; (3)设 h(x)  f ( f (x))  c ,其中 c[2,2],求函数 y  h(x) 的零点个数. 19.(本小题满分 16 分) x2 y2 如图,在平面直角坐标系 xOy 中,椭圆 1(a  b  0)的左、右焦点分别为 a2 b2 3F(c,0) ,F2 (c,0).已知 (1,e) 和e, 都在椭圆上,其中 e 为椭圆的离心率. 12y(1)求椭圆的离心率; AB2012年普通高等学校招生全国统一考试(江苏卷)数 学 Ⅰ POxFF2 1(2)设 A,B 是椭圆上位于 x 轴上方的两点,且直线 AF 1与直线 BF2 平行, AF2 与 BF1 交于点 P. 6(i)若 AF  BF2  ,求直线 AF1 的斜率; 12(ii)求证: PF  PF2 是定值. 120.(本小题满分 16 分) an  bn 已知各项均为正数的两个数列{an} 和{bn}满足: an1 ,nN .2an  bn2 2  bn bn an (1)设bn1 1 ,nN ,求证:数列 是等差数列; an bn (2)设bn1  2  ,nN ,且{an}是等比数列,求 a1 和 b1 的值. an 绝密★启用前 2012 年普通高等学校招生全国统一考试(江苏卷) 数学Ⅱ(附加题) 注 意 事 项 考生在答题前请认真阅读本注意事项及各题答题要求: 2012年普通高等学校招生全国统一考试(江苏卷)数 学 Ⅰ 1.本试卷共 2 页,均为非选择题(第 21 题~第 23 题)。本卷满分为 40 分。考试时间为 30 分钟。考试结束后,请将本试卷和答题卡一并交回。 2.答题前,请您务必将自己的姓名、考试证号用 0.5 毫米黑色墨水的签字笔填写在试卷及 21.[选做题]本题包括 A、B、C、D 四小题,请选定其中两题,并在相应的答题区域内作 答.若多做,则按作答的前两题评分. 解答时应写出文字说明、证明过程或演算步骤. A.[选修 4 – 1:几何证明选讲](本小题满分 10 分) 如图,AB 是圆 O 的直径,D,E 为圆上位于 AB 异侧的两点,连结 BD 并延长至点 C, C使 BD = DC,连结 AC,AE,DE. D求证: E  C .ABOE(第 21-A 题) B.[选修 4 – 2:矩阵与变换](本小题满分 10 分) 14134已知矩阵 A 的逆矩阵 A1  ,求矩阵 A 的特征值. 1 2 2 C.[选修 4 – 4:坐标系与参数方程](本小题满分 10 分) 33在极坐标中,已知圆 C 经过点 P2, ,圆心为直线 sin     与极轴的交 42012年普通高等学校招生全国统一考试(江苏卷)数 学 Ⅰ 2点,求圆 C 的极坐标方程. D.[选修 4 – 5:不等式选讲](本小题满分 10 分) 1165已知实数 x,y 满足:| x  y | ,| 2x  y | ,求证:| y | .318 【必做题】第22 题、第23 题,每题10 分,共计20 分.请在答题卡指定区域内作答,解答时应写 出文字说明、证明过程或演算步骤. 22.(本小题满分 10 分) 设为随机变量,从棱长为 1 的正方体的 12 条棱中任取两条,当两条棱相交时,  0 ;当 两条棱平行时, 的值为两条棱之间的距离;当两条棱异面时, 1 (1)求概率 P(  0) (2)求 的分布列,并求其数学期望E() .;.23.(本小题满分 10 分) 设集合 P {1,2 , ,n} ,nN .记 f (n) 为同时满足下列条件的集合 A 的个数: …n①A  Pn ;②若 x A ,则 2x A ;③若 xðP A ,则 2xðP A. nn(1)求 f (4) ;(2)求 f (n) 的解析式(用 n 表示). 2012年普通高等学校招生全国统一考试(江苏卷)数 学 Ⅰ 2012 年江苏省高考数学试卷 参考答案与试题解析  一、填空题:本大题共 14 小题,每小题 5 分,共计 70 分.请把答案填写在答题卡相应位 置上. 1.(5 分)(2012•江苏)已知集合 A={1,2,4},B={2,4,6},则 A∪B= {1,2,4, 6} . 考点:并集及其运算.菁优网版权所有 专题:集合. 分析:由题意,A,B 两个集合的元素已经给出,故由并集的运算规则直接得到两个集合的 并集即可 解答:解:∵A={1,2,4},B={2,4,6}, ∴A∪B={1,2,4,6} 故答案为{1,2,4,6} 点评:本题考查并集运算,属于集合中的简单计算题,解题的关键是理解并的运算定义  2.(5 分)(2012•江苏)某学校高一、高二、高三年级的学生人数之比为 3:3:4,现 用分层抽样的方法从该校高中三个年级的学生中抽取容量为 50 的样本,则应从高二年级 抽取 15 名学生. 考点:分层抽样方法.菁优网版权所有 2012年普通高等学校招生全国统一考试(江苏卷)数 学 Ⅰ 专题:概率与统计. 分析:根据三个年级的人数比,做出高二所占的比例,用要抽取得样本容量乘以高二所占的 比例,得到要抽取的高二的人数. 解答:解:∵高一、高二、高三年级的学生人数之比为 3:3:4, ∴高二在总体中所占的比例是 =,∵用分层抽样的方法从该校高中三个年级的学生中抽取容量为 50 的样本, ∴要从高二抽取 故答案为:15 ,点评:本题考查分层抽样方法,本题解题的关键是看出三个年级中各个年级所占的比例,这 就是在抽样过程中被抽到的概率,本题是一个基础题.  3.(5 分)(2012•江苏)设 a,b∈R,a+bi= (i 为虚数单位),则 a+b 的值为 8  .考点:复数代数形式的乘除运算;复数相等的充要条件.菁优网版权所有 专题:数系的扩充和复数. 分析:由题意,可对复数代数式分子与分母都乘以 1+2i,再由进行计算即可得到 a+bi=5+3i, 再由复数相等的充分条件即可得到 a,b 的值,从而得到所求的答案 解答: 解:由题,a,b∈R,a+bi= 所以 a=5,b=3,故 a+b=8 故答案为 8 点评:本题考查复数代数形式的乘除运算,解题的关键是分子分母都乘以分母的共轭,复数 的四则运算是复数考查的重要内容,要熟练掌握,复数相等的充分条件是将复数运算 转化为实数运算的桥梁,解题时要注意运用它进行转化.  4.(5 分)(2012•江苏)图是一个算法流程图,则输出的 k 的值是 5 . 2012年普通高等学校招生全国统一考试(江苏卷)数 学 Ⅰ 考点:循环结构.菁优网版权所有 专题:算法和程序框图. 分析:利用程序框图计算表达式的值,判断是否循环,达到满足题目的条件,结束循环,得 到结果即可. 解:1﹣5+4=0>0,不满足判断框.则 k=2,22﹣10+4=﹣2>0,不满足判断框的条件 解答: ,则 k=3,32﹣15+4=﹣2>0,不成立,则 k=4,42﹣20+4=0>0,不成立,则 k=5, 52﹣25+4=4>0,成立, 所以结束循环, 输出 k=5. 故答案为:5. 点评:本题考查循环框图的作用,考查计算能力,注意循环条件的判断.  5.(5 分)(2012•江苏)函数 f(x)= 的定义域为 (0, ] . 考点:对数函数的定义域.菁优网版权所有 专题:函数的性质及应用. 分析:根据开偶次方被开方数要大于等于 0,真数要大于 0,得到不等式组,根据对数的单 调性解出不等式的解集,得到结果. 解答: 解:函数 f(x)= 要满足 1﹣2 ≥0,且 x>0 ∴∴,x>0 ,x>0, 2012年普通高等学校招生全国统一考试(江苏卷)数 学 Ⅰ ∴,x>0, ∴0 ,故答案为:(0, ]点评:本题考查对数的定义域和一般函数的定义域问题,在解题时一般遇到,开偶次方时, 被开方数要不小于 0,;真数要大于 0;分母不等于 0;0 次方的底数不等于 0,这种 题目的运算量不大,是基础题.  6.(5 分)(2012•江苏)现有 10 个数,它们能构成一个以 1 为首项,﹣3 为公比的等比 数列,若从这 10 个数中随机抽取一个数,则它小于 8 的概率是 . 考点:等比数列的性质;古典概型及其概率计算公式.菁优网版权所有 专题:等差数列与等比数列;概率与统计. 分析:先由题意写出成等比数列的 10 个数为,然后找出小于 8 的项的个数,代入古典概论 的计算公式即可求解 解:由题意成等比数列的 10 个数为:1,﹣3,(﹣3)2,(﹣3)3…(﹣3)9 解答: 其中小于 8 的项有:1,﹣3,(﹣3)3,(﹣3)5,(﹣3)7,(﹣3)9 共 6 个数 这 10 个数中随机抽取一个数,则它小于 8 的概率是 P= 故答案为: 点评:本题主要考查了等比数列的通项公式及古典概率的计算公式的应用,属于基础试题  7.(5 分)(2012•江苏)如图,在长方体 ABCD﹣A1B1C1D1 中,AB=AD=3cm,AA1=2cm ,则四棱锥 A﹣BB1D1D 的体积为 6 cm3. 考点:棱柱、棱锥、棱台的体积.菁优网版权所有 专题:空间位置关系与距离;立体几何. 分析:过 A 作 AO⊥BD 于 O,求出 AO,然后求出几何体的体积即可. 解答: 解:过 A 作 AO⊥BD 于 O,AO 是棱锥的高,所以 AO= =,2012年普通高等学校招生全国统一考试(江苏卷)数 学 Ⅰ 所以四棱锥 A﹣BB1D1D 的体积为 V= 故答案为:6. =6. 点评:本题考查几何体的体积的求法,考查空间想象能力与计算能力.  8.(5 分)(2012•江苏)在平面直角坐标系 xOy 中,若双曲线 的离心率 为,则 m 的值为 2 . 考点:双曲线的简单性质.菁优网版权所有 专题:圆锥曲线的定义、性质与方程. 222分析: 由双曲线方程得 y 的分母 m +4>0,所以双曲线的焦点必在 x 轴上.因此 a =m>0, 可得 c2=m2+m+4,最后根据双曲线的离心率为 ,可得c2=5a2,建立关于 m 的方程 :m2+m+4=5m,解之得 m=2. 2解答: 解:∵m +4>0 ∴双曲线 的焦点必在 x 轴上 因此 a2=m>0,b2=m2+4 ∴c2=m+m2+4=m2+m+4 ∵双曲线 的离心率为 ,∴,可得 c2=5a2, 所以 m2+m+4=5m,解之得 m=2 故答案为:2 点评:本题给出含有字母参数的双曲线方程,在已知离心率的情况下求参数的值,着重考查 了双曲线的概念与性质,属于基础题.  9.(5 分)(2012•江苏)如图,在矩形 ABCD 中,AB= ,BC=2,点 E 为 BC 的中点, 点 F 在边 CD 上,若 =,则 的值是 . 2012年普通高等学校招生全国统一考试(江苏卷)数 学 Ⅰ 考点:平面向量数量积的运算.菁优网版权所有 专题:平面向量及应用. 分析:根据所给的图形,把已知向量用矩形的边所在的向量来表示,做出要用的向量的模长 ,表示出要求得向量的数量积,注意应用垂直的向量数量积等于 0,得到结果. 解答: 解:∵ ,====||= ,∴| |=1,| |= ﹣1, ∴=( )( )= =﹣ =﹣2+ +2= ,故答案为: 点评:本题考查平面向量的数量积的运算.本题解题的关键是把要用的向量表示成已知向量 的和的形式,本题是一个中档题目.  10.(5 分)(2012•江苏)设 f(x)是定义在 R 上且周期为 2 的函数,在区间[﹣1,1]上 ,f(x)= ﹣10 . 其中 a,b∈R.若 =,则 a+3b 的值为  考点:函数的周期性;分段函数的解析式求法及其图象的作法.菁优网版权所有 专题:函数的性质及应用. 分析: 由于 f(x)是定义在 R 上且周期为 2 的函数,由 f(x)的表达式可得 f( )=f(﹣ )=1﹣a=f( )= ;再由 f(﹣1)=f(1)得 2a+b=0,解关于 a,b 的方程组可得 2012年普通高等学校招生全国统一考试(江苏卷)数 学 Ⅰ 到 a,b 的值,从而得到答案. 解答: 解:∵f(x)是定义在 R 上且周期为 2 的函数,f(x)= ,∴f( )=f(﹣ )=1﹣ a,f( )= ∴1﹣ a= ;又 =,①又 f(﹣1)=f(1), ∴2a+b=0,② 由①②解得 a=2,b=﹣4; ∴a+3b=﹣10. 故答案为:﹣10. 点评:本题考查函数的周期性,考查分段函数的解析式的求法,着重考查方程组思想,得到 a,b 的方程组并求得 a,b 的值是关键,属于中档题.  11.(5 分)(2012•江苏)设 α 为锐角,若 cos(α+ )= ,则 sin(2α+ )的值为   . 考点:三角函数中的恒等变换应用;两角和与差的余弦函数;两角和与差的正弦函数;二倍 角的正弦.菁优网版权所有 专题:三角函数的求值;三角函数的图像与性质. 分析: 先设 β=α+ ,根据 cosβ 求出 sinβ,进而求出 sin2β 和 cos2β,最后用两角和的正弦 公式得到 sin(2α+ )的值. 解答: 解:设 β=α+ ,∴sinβ= ,sin2β=2sinβcosβ= ,cos2β=2cos2β﹣1= ,∴sin(2α+ )=sin(2α+ ﹣)=sin(2β﹣ )=sin2βcos ﹣cos2βsin =.故答案为: .2012年普通高等学校招生全国统一考试(江苏卷)数 学 Ⅰ 点评: 本题要我们在已知锐角 α+ 的余弦值的情况下,求 2α+ 的正弦值,着重考查了两 角和与差的正弦、余弦公式和二倍角的正弦、余弦等公式,考查了三角函数中的恒等 变换应用,属于中档题.  12.(5 分)(2012•江苏)在平面直角坐标系 xOy 中,圆 C 的方程为 x2+y2﹣8x+15=0, 若直线 y=kx﹣2 上至少存在一点,使得以该点为圆心,1 为半径的圆与圆 C 有公共点,则 k 的最大值是 . 考点:圆与圆的位置关系及其判定;直线与圆的位置关系.菁优网版权所有 专题:直线与圆. 22由于圆 C 的方程为(x﹣4)+y2=1,由题意可知,只需(x﹣4)+y2=1 与直线 y=kx﹣2 分析: 有公共点即可. 解:∵圆 C 的方程为 x2+y2﹣8x+15=0,整理得:(x﹣4) +y2=1,即圆 C 是以(4,0 2解答: )为圆心,1 为半径的圆; 又直线 y=kx﹣2 上至少存在一点,使得以该点为圆心,1 为半径的圆与圆 C 有公共点 ,∴只需圆 C′:(x﹣4)2+y2=1 与直线 y=kx﹣2 有公共点即可. 设圆心 C(4,0)到直线 y=kx﹣2 的距离为 d, 则 d= ≤2,即 3k2﹣4k≤0, ∴0≤k≤ . ∴k 的最大值是 . 故答案为: . 本题考查直线与圆的位置关系,将条件转化为“(x﹣4)2+y2=4 与直线 y=kx﹣2 有公 点评: 共点”是关键,考查学生灵活解决问题的能力,属于中档题.  13.(5 分)(2012•江苏)已知函数 f(x)=x2+ax+b(a,b∈R)的值域为[0,+∞),若 关于 x 的不等式 f(x)<c 的解集为(m,m+6),则实数 c 的值为 9 . 考点:一元二次不等式的应用.菁优网版权所有 专题:函数的性质及应用;不等式的解法及应用. 分析:根据函数的值域求出 a 与 b 的关系,然后根据不等式的解集可得 f(x)=c 的两个根为 m,m+6,最后利用根与系数的关系建立等式,解之即可. 2012年普通高等学校招生全国统一考试(江苏卷)数 学 Ⅰ 2解答: 解:∵函数 f(x)=x +ax+b(a,b∈R)的值域为[0,+∞), ∴f(x)=x2+ax+b=0 只有一个根,即△=a2﹣4b=0 则 b= 不等式 f(x)<c 的解集为(m,m+6), 即为 x2+ax+ <c 解集为(m,m+6), 则 x2+ax+ ﹣c=0 的两个根为 m,m+6 ∴|m+6﹣m|= =6 解得 c=9 故答案为:9 点评:本题主要考查了一元二次不等式的应用,以及根与系数的关系,同时考查了分析求解 的能力和计算能力,属于中档题.  14.(5 分)(2012•江苏)已知正数 a,b,c 满足:5c﹣3a≤b≤4c﹣a,clnb≥a+clnc,则 的取值范围是 [e,7] . 考点:导数在最大值、最小值问题中的应用;不等式的综合.菁优网版权所有 专题:导数的综合应用;不等式的解法及应用. 分析: 由题意可求得 ≤ ≤2,而 5× ﹣3≤ ≤4× ﹣1,于是可得 ≤7;由 c ln b≥a+c ln c 可得 0 <a≤cln ,从而 ≥ ,设函数 f(x)= (x>1),利用其导数可求得 f(x)的 极小值,也就是 的最小值,于是问题解决. 解:∵4c﹣a≥b>0 解答: ∴ > , ∵5c﹣3a≤4c﹣a, ∴ ≤2. 从而 ≤2×4﹣1=7,特别当 =7 时,第二个不等式成立.等号成立当且仅当 a:b:c=1 :7:2. 2012年普通高等学校招生全国统一考试(江苏卷)数 学 Ⅰ 又 clnb≥a+clnc, ∴0<a≤cln , 从而 ≥ ,设函数 f(x)= (x>1), ∵f′(x)= ,当 0<x<e 时,f′(x)<0,当 x>e 时,f′(x)>0,当 x=e 时,f′(x)=0, ∴当 x=e 时,f(x)取到极小值,也是最小值. ∴f(x)min=f(e)= =e. 等号当且仅当 =e, =e 成立.代入第一个不等式知:2≤ =e≤3,不等式成立,从而 e 可以取得.等号成立当且仅当 a:b:c=1:e:1. 从而 的取值范围是[e,7]双闭区间. 点评: 本题考查不等式的综合应用,得到 ≥ ,通过构造函数求 的最小值是关键,也是 难点,考查分析与转化、构造函数解决问题的能力,属于难题.  二、解答题:本大题共 6 小题,共计 90 分.请在答题卡指定区域内作答,解答时应写出 文字说明、证明过程或演算步骤. 15.(14 分)(2012•江苏)在△ABC 中,已知 (1)求证:tanB=3tanA; .(2)若 cosC= ,求 A 的值. 考点:解三角形;平面向量数量积的运算;三角函数中的恒等变换应用.菁优网版权所有 专题:三角函数的求值;解三角形;平面向量及应用. 分析:(1)利用平面向量的数量积运算法则化简已知的等式左右两边,然后两边同时除以 c 化简后,再利用正弦定理变形,根据 cosAcosB≠0,利用同角三角函数间的基本关系 弦化切即可得到 tanB=3tanA; (2)由 C 为三角形的内角,及 cosC 的值,利用同角三角函数间的基本关系求出 sinC 2012年普通高等学校招生全国统一考试(江苏卷)数 学 Ⅰ 的值,进而再利用同角三角函数间的基本关系弦化切求出 tanC 的值,由 tanC 的值, 及三角形的内角和定理,利用诱导公式求出 tan(A+B)的值,利用两角和与差的正 切函数公式化简后,将 tanB=3tanA 代入,得到关于 tanA 的方程,求出方程的解得到 tanA 的值,再由 A 为三角形的内角,利用特殊角的三角函数值即可求出 A 的度数. 解答: 解:(1)∵ •=3 •,∴cbcosA=3cacosB,即 bcosA=3acosB, 由正弦定理 得:sinBcosA=3sinAcosB, =又 0<A+B<π,∴cosA>0,cosB>0, 在等式两边同时除以 cosAcosB,可得 tanB=3tanA; (2)∵cosC= ,0<C<π, sinC= =,∴tanC=2, 则 tan[π﹣(A+B)]=2,即 tan(A+B)=﹣2, ∴=﹣2, 将 tanB=3tanA 代入得: =﹣2, 整理得:3tan2A﹣2tanA﹣1=0,即(tanA﹣1)(3tanA+1)=0, 解得:tanA=1 或 tanA=﹣ , 又 cosA>0,∴tanA=1, 又 A 为三角形的内角, 则 A= .点评:此题属于解三角形的题型,涉及的知识有:平面向量的数量积运算法则,正弦定理, 同角三角函数间的基本关系,诱导公式,两角和与差的正切函数公式,以及特殊角的 三角函数值,熟练掌握定理及公式是解本题的关键.  16.(14 分)(2012•江苏)如图,在直三棱柱 ABC﹣A1B1C1 中,A1B1=A1C1,D,E 分 别是棱 BC,CC1 上的点(点 D 不同于点 C),且 AD⊥DE,F 为 B1C1 的中点.求证: (1)平面 ADE⊥平面 BCC1B1; (2)直线 A1F∥平面 ADE. 2012年普通高等学校招生全国统一考试(江苏卷)数 学 Ⅰ 考点:平面与平面垂直的判定;直线与平面平行的判定.菁优网版权所有 专题:空间位置关系与距离;立体几何. (1)根据三棱柱 ABC﹣A B C是直三棱柱,得到 CC ⊥平面 ABC,从而 AD⊥CC , 分析: 11111结合已知条件 AD⊥DE,DE、CC1 是平面 BCC1B1 内的相交直线,得到 AD⊥平面 BCC1B1,从而平面 ADE⊥平面 BCC1B1; (2)先证出等腰三角形△A1B1C1 中,A1F⊥B1C1,再用类似(1)的方法,证出 A1F⊥ 平面 BCC1B1,结合 AD⊥平面 BCC1B1,得到 A1F∥AD,最后根据线面平行的判定定 理,得到直线 A1F∥平面 ADE. 解:(1)∵三棱柱 ABC﹣A B C是直三棱柱, 解答: 11 1 ∴CC1⊥平面 ABC, ∵AD⊂平面 ABC, ∴AD⊥CC1 又∵AD⊥DE,DE、CC1 是平面 BCC1B1 内的相交直线 ∴AD⊥平面 BCC1B1, ∵AD⊂平面 ADE ∴平面 ADE⊥平面 BCC1B1; (2)∵△A1B1C1 中,A1B1=A1C1,F 为 B1C1 的中点 ∴A1F⊥B1C1, ∵CC1⊥平面 A1B1C1,A1F⊂平面 A1B1C1, ∴A1F⊥CC1 又∵B1C1、CC1 是平面 BCC1B1 内的相交直线 ∴A1F⊥平面 BCC1B1 又∵AD⊥平面 BCC1B1, ∴A1F∥AD ∵A1F⊄平面 ADE,AD⊂平面 ADE, ∴直线 A1F∥平面 ADE. 点评:本题以一个特殊的直三棱柱为载体,考查了直线与平面平行的判定和平面与平面垂直 的判定等知识点,属于中档题.  2012年普通高等学校招生全国统一考试(江苏卷)数 学 Ⅰ 17.(14 分)(2012•江苏)如图,建立平面直角坐标系 xOy,x 轴在地平面上,y 轴垂直 于地平面,单位长度为 1 千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程 y=kx﹣ (1+k2)x2(k>0)表示的曲线上,其中 k 与发射方向有关.炮的射程是指炮弹落地点 的横坐标. (1)求炮的最大射程; (2)设在第一象限有一飞行物(忽略其大小),其飞行高度为 3.2 千米,试问它的横坐标 a 不超过多少时,炮弹可以击中它?请说明理由. 考点:函数模型的选择与应用.菁优网版权所有 专题:函数的性质及应用. 分析: (1)求炮的最大射程即求 y=kx﹣ (1+k2)x2(k>0)与 x 轴的横坐标,求出后 应用基本不等式求解. (2)求炮弹击中目标时的横坐标的最大值,由一元二次方程根的判别式求解. 解答: 解:(1)在 y=kx﹣ (1+k2)x2(k>0)中,令 y=0,得 kx﹣ (1+k2)x2=0. 由实际意义和题设条件知 x>0,k>0. ∴,当且仅当 k=1 时取等号. ∴炮的最大射程是 10 千米. (2)∵a>0,∴炮弹可以击中目标等价于存在 k>0,使 ka﹣ (1+k2)a2=3.2 成立, 即关于 k 的方程 a2k2﹣20ak+a2+64=0 有正根. 由韦达定理满足两根之和大于 0,两根之积大于 0, 故只需△=400a2﹣4a2(a2+64)≥0 得 a≤6. 此时,k= >0. ∴当 a 不超过 6 千米时,炮弹可以击中目标. 点评:本题考查函数模型的运用,考查基本不等式的运用,考查学生分析解决问题的能力, 属于中档题.  2012年普通高等学校招生全国统一考试(江苏卷)数 学 Ⅰ 18.(16 分)(2012•江苏)若函数 y=f(x)在 x=x0 处取得极大值或极小值,则称 x0 为 函数 y=f(x)的极值点.已知 a,b 是实数,1 和﹣1 是函数 f(x)=x3+ax2+bx 的两个极值 点. (1)求 a 和 b 的值; (2)设函数 g(x)的导函数 g′(x)=f(x)+2,求 g(x)的极值点; (3)设 h(x)=f(f(x))﹣c,其中 c∈[﹣2,2],求函数 y=h(x)的零点个数. 考点:函数在某点取得极值的条件;函数的零点.菁优网版权所有 专题:导数的综合应用. (1)求出 导函数,根据1 和﹣1 是函数的两个极值点代入列方程组求解即可. 分析: (2)由(1)得 f(x)=x3﹣3x,求出 g′(x),令 g′(x)=0,求解讨论即可. (3)先分|d|=2 和|d|<2 讨论关于的方程 f(x)=d 的情况;再考虑函数 y=h(x)的零 点. 322解答: 解:(1)由 f(x)=x +ax +bx,得 f′(x)=3x +2ax+b. ∵1 和﹣1 是函数 f(x)的两个极值点, ∴f′(1)=3﹣2a+b=0,f′(﹣1)=3+2a+b=0,解得 a=0,b=﹣3. (2)由(1)得,f(x)=x3﹣3x,∴g′(x)=f(x)+2=x3﹣3x+2=(x﹣1)2(x+2) =0,解得 x1=x2=1,x3=﹣2. ∵当 x<﹣2 时,g′(x)<0;当﹣2<x<1 时,g′(x)>0, ∴﹣2 是 g(x)的极值点. ∵当﹣2<x<1 或 x>1 时,g′(x)>0,∴1 不是 g(x) 的极值点. ∴g(x)的极值点是﹣2. (3)令 f(x)=t,则 h(x)=f(t)﹣c. 先讨论关于 x 的方程 f(x)=d 根的情况,d∈[﹣2,2] 当|d|=2 时,由(2 )可知,f(x)=﹣2 的两个不同的根为 1 和一 2,注意到 f(x)是 奇函数, ∴f(x)=2 的两个不同的根为﹣1 和 2. 当|d|<2 时,∵f(﹣1)﹣d=f(2)﹣d=2﹣d>0,f(1)﹣d=f(﹣2)﹣d=﹣2﹣d<0 ,∴一 2,﹣1,1,2 都不是 f(x)=d 的根. 由(1)知,f′(x)=3(x+1)(x﹣1). ①当 x∈(2,+∞)时,f′(x)>0,于是 f(x)是单调增函数,从而 f(x)>f(2) =2. 此时 f(x)=d 在(2,+∞)无实根. ②当 x∈(1,2)时,f′(x)>0,于是 f(x)是单调增函数. 又∵f(1)﹣d<0,f(2)﹣d>0,y=f(x)﹣d 的图象不间断, ∴f(x)=d 在(1,2 )内有唯一实根. 同理,在(一 2,一 1)内有唯一实根. ③当 x∈(﹣1,1)时,f′(x)<0,于是 f(x)是单调减函数. 2012年普通高等学校招生全国统一考试(江苏卷)数 学 Ⅰ 又∵f(﹣1)﹣d>0,f(1)﹣d<0,y=f(x)﹣d 的图象不间断, ∴f(x)=d 在(一 1,1 )内有唯一实根. 因此,当|d|=2 时,f(x)=d 有两个不同的根 x1,x2,满足|x1|=1,|x2|=2;当|d|<2 时,f(x)=d 有三个不同的根 x3,x4,x5,满足|xi|<2,i=3,4,5. 现考虑函数 y=h(x)的零点: ( i )当|c|=2 时,f(t)=c 有两个根 t1,t2,满足|t1|=1,|t2|=2.而 f(x)=t1 有三个 不同的根,f(x)=t2 有两个不同的根,故 y=h(x)有 5 个零点. ( i i)当|c|<2 时,f(t)=c 有三个不同的根 t3,t4,t5,满足|ti|<2,i=3,4,5. 而 f(x)=ti 有三个不同的根,故 y=h(x)有 9 个零点. 综上所述,当|c|=2 时,函数 y=h(x)有 5 个零点;当|c|<2 时,函数 y=h(x)有 9 个零点. 点评:本题考查导数知识的运用,考查函数的极值,考查函数的单调性,考查函数的零点, 考查分类讨论的数学思想,综合性强,难度大.  19.(16 分)(2012•江苏)如图,在平面直角坐标系 xOy 中,椭圆 (a>b>0 )的左、右焦点分别为 F1(﹣c,0),F2(c,0).已知(1,e)和(e, )都在椭圆 上,其中 e 为椭圆的离心率. (1)求椭圆的方程; (2)设 A,B 是椭圆上位于 x 轴上方的两点,且直线 AF1 与直线 BF2 平行,AF2 与 BF1 交于点 P. (i)若 AF1﹣BF2= ,求直线 AF1 的斜率; (ii)求证:PF1+PF2 是定值. 考点直线与圆锥曲线的综合问题;直线的斜率;椭圆的标准方程.菁优网版权所有 :专题圆锥曲线的定义、性质与方程. :2012年普通高等学校招生全国统一考试(江苏卷)数 学 Ⅰ 分析 :(1)根据椭圆的性质和已知(1,e)和(e, ),都在椭圆上列式求解. (2)(i)设 AF1 与 BF2 的方程分别为 x+1=my,x﹣1=my,与椭圆方程联立,求出|AF1|、|BF2|, 根据已知条件 AF1﹣BF2= ,用待定系数法求解; (ii)利用直线 AF1 与直线 BF2 平行,点 B 在椭圆上知,可得 ,,由此可求得 PF1+PF2 是定值. 解答 :(1)解:由题设知 a2=b2+c2,e= ,由点(1,e)在椭圆上,得 由点(e, )在椭圆上,得 ,∴b=1,c2=a2﹣1. ∴,∴a2=2 ∴椭圆的方程为 .(2)解:由(1)得 F1(﹣1,0),F2(1,0), 又∵直线 AF1 与直线 BF2 平行,∴设 AF1 与 BF2 的方程分别为 x+1=my,x﹣1=my. 设 A(x1,y1),B(x2,y2),y1>0,y2>0, ∴由 ,可得(m2+2) ﹣2my1﹣1=0. ∴,(舍), ∴|AF1|= 同理|BF2|= ×|0﹣y1|= ①②2012年普通高等学校招生全国统一考试(江苏卷)数 学 Ⅰ (i)由①②得|AF1|﹣|BF2|= ,∴ ,解得 m2=2. ∵注意到 m>0,∴m= ∴直线 AF1 的斜率为 ..(ii)证明:∵直线 AF1 与直线 BF2 平行,∴ ,即 .由点 B 在椭圆上知, 同理 ,∴ ..∴PF1+PF2= =由①②得, ,,∴PF1+PF2= .∴PF1+PF2 是定值. 点评本题考查椭圆的标准方程,考查直线与椭圆的位置关系,考查学生的计算能力,属于中档题. : 20.(16 分)(2012•江苏)已知各项均为正数的两个数列{an}和{bn}满足:an+1 =,n∈N*, (1)设 bn+1=1+ ,n∈N*,求证:数列 是等差数列; (2)设 bn+1 =•,n∈N*,且{an}是等比数列,求 a1 和 b1 的值. 考点:数列递推式;等差关系的确定;等比数列的性质.菁优网版权所有 2012年普通高等学校招生全国统一考试(江苏卷)数 学 Ⅰ 专题:等差数列与等比数列. 分析: (1)由题意可得,an+1 ===,从而可得 ,可证 (2)由基本不等式可得, ,由{an} 是等比数列利用反证法可证明 q= =1,进而可求 a1,b1 解答: 解:(1)由题意可知,an+1 ===∴从而数列{ }是以 1 为公差的等差数列 (2)∵an>0,bn>0 ∴从而 (*) 设等比数列{an}的公比为 q,由 an>0 可知 q>0 下证 q=1 若 q>1,则 ,故当 时, 与(*) 矛盾 2012年普通高等学校招生全国统一考试(江苏卷)数 学 Ⅰ 0<q<1,则 ,故当 时, 与(*)矛 盾综上可得 q=1,an=a1, 所以, ∵∴数列{bn}是公比 的等比数列 若,则 ,于是 b1<b2<b3 又由 可得 ∴b1,b2,b3 至少有两项相同,矛盾 ∴∴,从而 =点评:本题主要考查了利用构造法证明等差数列及等比数列的通项公式的应用,解题的关键 是反证法的应用.  三、附加题(21 选做题:任选 2 小题作答,22、23 必做题)(共 3 小题,满分 40 分) 21.(20 分)(2012•江苏)A.[选修 4﹣1:几何证明选讲] 如图,AB 是圆 O 的直径,D,E 为圆上位于 AB 异侧的两点,连接 BD 并延长至点 C, 使 BD=DC,连接 AC,AE,DE. 求证:∠E=∠C. B.[选修 4﹣2:矩阵与变换] 已知矩阵 A 的逆矩阵 ,求矩阵 A 的特征值. C.[选修 4﹣4:坐标系与参数方程] 2012年普通高等学校招生全国统一考试(江苏卷)数 学 Ⅰ 在极坐标中,已知圆 C 经过点 P( ,),圆心为直线 ρsin(θ﹣ )=﹣ 与极轴 的交点,求圆 C 的极坐标方程. D.[选修 4﹣5:不等式选讲] 已知实数 x,y 满足:|x+y|< ,|2x﹣y|< ,求证:|y|< .考点:特征值与特征向量的计算;简单曲线的极坐标方程;不等式的证明;综合法与分析法 (选修).菁优网版权所有 专题:不等式的解法及应用;直线与圆;矩阵和变换;坐标系和参数方程. 分析:A.要证∠E=∠C,就得找一个中间量代换,一方面考虑到∠B,∠E 是同弧所对圆周角, 相等;另一方面根据线段中垂线上的点到线段两端的距离相等和等腰三角形等边对等 角的性质得到.从而得证. B.由矩阵 A 的逆矩阵,根据定义可求出矩阵 A,从而求出矩阵 A 的特征值. C.根据圆心为直线 ρsin(θ﹣ )=﹣ 与极轴的交点求出的圆心坐标;根据圆经 过点 P( ,),求出圆的半径,从而得到圆的极坐标方程. D.根据绝对值不等式的性质求证. 解答:A.证明:连接 AD. ∵AB 是圆 O 的直径,∴∠ADB=90°(直径所对的圆周角是直角). ∴AD⊥BD(垂直的定义). 又∵BD=DC,∴AD 是线段 BC 的中垂线(线段的中垂线定义). ∴AB=AC(线段中垂线上的点到线段两端的距离相等). ∴∠B=∠C(等腰三角形等边对等角的性质). 又∵D,E 为圆上位于 AB 异侧的两点, ∴∠B=∠E(同弧所对圆周角相等). ∴∠E=∠C(等量代换). 2012年普通高等学校招生全国统一考试(江苏卷)数 学 Ⅰ B、解:∵矩阵 A 的逆矩阵 ,∴A= ∴f(λ)= =λ2﹣3λ﹣4=0 ∴λ1=﹣1,λ2=4 C、解:∵圆心为直线 ρsin(θ﹣ )=﹣ 与极轴的交点, ∴在 ρsin(θ﹣ )=﹣中令 θ=0,得 ρ=1.∴圆 C 的圆心坐标为(1,0). ∵圆 C 经过点 P( ,),∴圆 C 的半径为 PC=1. ∴圆 的极坐标方程为ρ=2cosθ. D、证明:∵3|y|=|3y|=|2(x+y)﹣(2x﹣y)|≤2|x+y|+|2x﹣y|,|x+y|< ,|2x﹣y|< , ∴3|y|< ,∴点评:本题是选作题,综合考查选修知识,考查几何证明选讲、矩阵与变换、坐标系与参数 方程、不等式证明,综合性强  22.(10 分)(2012•江苏)设 ξ 为随机变量,从棱长为 1 的正方体的 12 条棱中任取两条 ,当两条棱相交时,ξ=0;当两条棱平行时,ξ 的值为两条棱之间的距离;当两条棱异面时 ,ξ=1. (1)求概率 P(ξ=0); (2)求 ξ 的分布列,并求其数学期望 E(ξ). 2012年普通高等学校招生全国统一考试(江苏卷)数 学 Ⅰ 考点:离散型随机变量的期望与方差;古典概型及其概率计算公式.菁优网版权所有 专题:概率与统计. 分析:(1)求出两条棱相交时相交棱的对数,即可由概率公式求得概率. (2)求出两条棱平行且距离为 的共有6 对,即可求出相应的概率,从而求出随机 变量的分布列与数学期望. 解答:解:(1)若两条棱相交,则交点必为正方体 8 个顶点中的一个,过任意 1 个顶点恰 有 3 条棱, ∴共有 8 对相交棱, ∴P(ξ=0)= (2)若两条棱平行,则它们的距离为 1 或 ,其中距离为 的共有6 对, ∴P(ξ= )= ,P(ξ=1)=1﹣P(ξ=0)﹣P(ξ= )= ..∴随机变量 ξ 的分布列是: ξ01P∴其数学期望 E(ξ)=1× +=.点评:本题考查概率的计算,考查离散型随机变量的分布列与期望,求概率是关键.  23.(10 分)(2012•江苏)设集合 Pn={1,2,…,n},n∈N*.记 f(n)为同时满足下列 条件的集合 A 的个数: ①A⊆Pn;②若 x∈A,则 2x∉A;③若 x∈ A,则 2x∉ A. (1)求 f(4); (2)求 f(n)的解析式(用 n 表示). 考点:函数解析式的求解及常用方法;元素与集合关系的判断;集合的包含关系判断及应用 .菁优网版权所有 专题:集合. 分析: (1)由题意可得 P4={1,2,3,4},符合条件的集合 A 为:{2},{1,4},{2,3}, {1,3,4},故可求 f(4) (2)任取偶数 x∈pn,将 x 除以 2,若商仍为偶数,再除以 2…,经过 k 次后,商必为 奇数,此时记商为 m,可知,若 m∈A,则 x∈A,⇔k 为偶数;若 m∉A,则 x∈A⇔k 为奇数,可求 2012年普通高等学校招生全国统一考试(江苏卷)数 学 Ⅰ 解答: 解(1)当 n=4 时,P4={1,2,3,4},符合条件的集合 A 为:{2},{1,4},{2,3}, {1,3,4} 故 f(4)=4 (2)任取偶数 x∈pn,将 x 除以 2,若商仍为偶数,再除以 2…,经过 k 次后,商必为 奇数,此时记商为 m, 于是 x=m•2k,其中 m 为奇数,k∈N* 由条件可知,若 m∈A,则 x∈A,⇔k 为偶数 若 m∉A,则 x∈A⇔k 为奇数 于是 x 是否属于 A 由 m 是否属于 A 确定,设 Qn 是 Pn 中所有的奇数的集合 因此 f(n)等于 Qn 的子集个数,当 n 为偶数时(或奇数时),Pn 中奇数的个数是 (或 )∴点评:本题主要考查了集合之间包含关系的应用,解题的关键是准确应用题目中的定义 2012年普通高等学校招生全国统一考试(江苏卷)数 学 Ⅰ

分享到 :
相关推荐

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注