2012年天津市高考物理试卷解析版下载

2012年天津市高考物理试卷解析版下载

  • 最近更新2022年10月20日



2012 年天津市高考物理试卷解析版 参考答案与试题解析 一、选择题 1.(3 分)下列说法正确的是(  ) A.采用物理或化学方法可以有效地改变放射性元素的半衰期 B.由玻尔理论知道氢原子从激发态跃迁到基态时会放出光子 C.从高空对地面进行遥感摄影是利用紫外线良好的穿透能力 D.原子核所含核子单独存在时的总质量小于该原子核的质量 【考点】I4:红外线的热效应和红外线遥控;J3:玻尔模型和氢原子的能级结构;JA: 原子核衰变及半衰期、衰变速度.菁优网版权所有 【专题】54N:原子的能级结构专题. 【分析】元素的半衰期是由元素本身决定的与外部环境无关,由玻尔理论知道氢原子从 激发态跃迁到基态时会放出光子,卫星遥感的工作原理与红外线夜视仪的工作原理是相 同的是利用红外线良好的穿透能力,核子结合为原子核时能量增加必然存在质量亏损. 【解答】解:A、元素的半衰期是由元素本身决定的与外部环境无关,故 A 错误 B、由玻尔理论知道氢原子从激发态跃迁到基态时会放出光子,故 B 正确 C、卫星遥感的工作原理与红外线夜视仪的工作原理是相同的。从高空对地面进行遥感摄 影是利用红外线良好的穿透能力,故 C 错误 D、由于核子结合为原子核时能量增加必然存在质量亏损,故 D 错误 故选:B。 【点评】本题考查了近代物理中的基本知识,对于这部分基本知识要注意加强理解和应 用. 2.(3 分)如图所示,金属棒 MN 两端由等长的轻质细线水平悬挂,处于竖直向上的匀强磁 场中,棒中通以由 M 向 N 的电流,平衡时两悬线与竖直方向夹角均为 θ.如果仅改变下 列某一个条件,θ 角的相应变化情况是(  ) A.棒中的电流变大,θ 角变大 第 1 页 共 16 页 B.两悬线等长变短,θ 角变小 C.金属棒质量变大,θ 角变大 D.磁感应强度变大,θ 角变小 【考点】3C:共点力的平衡;CC:安培力.菁优网版权所有 【分析】对通电导线受力分析,求出夹角的关系表达式,然后根据表达式分析答题. 【解答】解:导体棒受力如图所示,tanθ ;A、棒中电流 I 变大,θ 角变大,故 A 正确; B、两悬线等长变短,θ 角不变,故 B 错误; C、金属棒质量变大,θ 角变小,故 C 错误; D、磁感应强度变大,θ 角变大,故 D 错误; 故选:A。 【点评】对金属棒进行受力分析、应用平衡条件,根据安培力公式分析即可正确解题. 3.(3 分)一人造地球卫星绕地球做匀速圆周运动,假如该卫星变轨后仍做匀速圆周运动, 动能减小为原来的 ,不考虑卫星质量的变化,则变轨前后卫星的(  ) A.向心加速度大小之比为 4:1 B.角速度大小之比为 2:1 C.周期之比为 1:8 D.轨道半径之比为 1:2 【考点】4F:万有引力定律及其应用;4H:人造卫星;64:动能.菁优网版权所有 【专题】52A:人造卫星问题. 【分析】根据万有引力提供向心力,通过线速度的变化得出轨道半径的变化,从而得出 向心加速度、周期、角速度的变化. 第 2 页 共 16 页 【解答】解:根据 得,v ,动能减小为原来的 ,则线速度减为原来 的 ,则轨道半径变为原来的4 倍。则轨道半径之比为 1:4。 根据 解得 ,,T ,则向心加速 度变为原来的 ,角速度变为原来的,周期变为原来的 8 倍。故 C 正确,A、B、D 错 误。 故选:C。 【点评】解决本题的关键掌握万有引力提供向心力,知道线速度、角速度、周期、向心 加速度与轨道半径的关系. 4.(3 分)通过一理想变压器,经同一线路输送相同的电功率 P,原线圈的电压 U 保持不变, 输电线路的总电阻为 R.当副线圈与原线圈的匝数比为 k 时,线路损耗的电功率为 P1, 若将副线圈与原线圈的匝数比提高到 nk,线路损耗的电功率为 P2,则 P1 和 分别为 (  ) A. C. ,,B. ,D.( )2R, 【考点】E8:变压器的构造和原理.菁优网版权所有 【专题】53A:交流电专题. 【分析】根据理想变压器原副线圈两端的电压与匝数成正比,变压器不改变功率,由 P= UI 求出输电线中电流,由功率公式求解输电线上损耗的电功率. 【解答】解:当副线圈与原线圈的匝数比为 k 时,输电电压为 KU,输送功率 P=KUI, 所以 ;当副线圈与原线圈的匝数比为 nk 时,输电电压为 nKU,输送功率 P=nKUI′,所以 第 3 页 共 16 页 ;故选:D。 【点评】对于输电问题,要搞清电路中电压、功率分配关系,注意理想变压器不改变功 率.基础题. 5.(3 分)两个固定的等量异号点电荷所产生电场等势面如图中虚线所示,一带负电的粒子 以某一速度从图中 A 点沿图示方向进入电场在纸面内飞行,最后离开电场,粒子只受静 电力作用,则粒子在电场中(  ) A.做直线运动,电势能先变小后变大 B.做直线运动,电势能先变大后变小 C.做曲线运动,电势能先变小后变大 D.做曲线运动,电势能先变大后变小 【考点】A7:电场线;AE:电势能与电场力做功;AF:等势面.菁优网版权所有 【专题】532:电场力与电势的性质专题. 【分析】粒子在静电场中电场力先做正功后做负功,电势能先减小后增大.粒子所受的 电场力与速度方向不在同一直线上,做曲线运动. 【解答】解:根据电场线与等势线垂直可知,在 A 点电场线方向应与速度 v 垂直,则粒 子所受的电场力与速度 v 也垂直,粒子做曲线运动。粒子靠近两电荷连线时,电场力做 正功,离开两电荷连线时,电场力做负功,则其电势能先变小后变大。故 C 正确。 故选:C。 第 4 页 共 16 页 【点评】本题关键抓住电场线与等势线的关系判断电场力方向与粒子初速度方向的关系, 分析运动情况,根据电场力做功正负,判断电势能的变化. 6.(3 分)半圆形玻璃砖横截面如图,AB 为直径,O 点为圆心.在该截面内有 a、b 两束单 色可见光从空气垂直于 AB 射入玻璃砖,两入射点到 O 的距离相等.两束光在半圆边界 上反射和折射的情况如图所示,则 a、b 两束光(  ) A.在同种均匀介质中传播,a 光的传播速度较大 B.以相同的入射角从空气斜射入水中,b 光的折射角大 C.若 a 光照射某金属表面能发生光电效应,b 光也一定能 D.分别通过同一双缝干涉装置,a 光的相邻亮条纹间距大 【考点】H3:光的折射定律;H9:光的干涉.菁优网版权所有 【专题】54D:光的折射专题. 【分析】通过光路图可知,a、b 两束光照射到圆弧面上的入射角相等,b 光发生了全反 射,a 光未发生全反射,根据 sinC 得出两光的折射率大小,从而根据 v 比较出光在 介质中的速度大小.通过折射率的大小比较出频率和波长的大小,从而判断能否发生光 电效应和条纹间距的大小. 【解答】解:A、b 光发生了全反射,a 光未发生全反射,知 b 光的临界角小,根据 sinC 第 5 页 共 16 页 知,b 光的折射率大,根据 v 知,b 光的传播速度小,a 光的传播速度大。故 A 正确。 B、根据折射定律可知,b 光的折射率大,则 b 光的折射角小。故 B 错误。 C、b 光的折射率大,则 b 光的频率大,若 a 光照射某金属表面能发生光电效应,b 光也 一定能。故 C 正确。 D、b 光的折射率大,频率大,则 b 光的波长小,根据 知,a 光的条纹间距大。 故 D 正确。 故选:ACD。 【点评】解决本题的突破口通过全反射比较出 a、b 两光的折射率大小.知道折射率、频 率、波长、在介质中的速度等关系. 7.(3 分)沿 x 轴正向传播的一列简谐横波在 t=0 时刻的波形如图所示,M 为介质中的一 个质点,该波的传播速度为 40m/s,则 t s 时(  ) A.质点 M 对平衡位置的位移一定为负值 B.质点 M 的速度方向与对平衡位置的位移方向相同 C.质点 M 的加速度方向与速度方向一定相同 D.质点 M 的加速度方向与对平衡位置的位移方向相反 【考点】F4:横波的图象;F5:波长、频率和波速的关系.菁优网版权所有 【专题】16:压轴题. 【分析】由图读出波长求出周期,根据时间与周期的关系及 t=0 时刻 P 点的速度方向, 分析在 t=0.025s 时刻,质点 M 的位置,确定速度和加速度的变化,以及速度、加速度 的方向. 【 解 答 】 解 : 由 图 读 出 波 长 为λ = 4m , 则 该 波 的 周 期 为T ,ts.t=0 时刻质点 M 向上运动,则在 t s 时刻,质点 M 正从波峰向平衡位置 第 6 页 共 16 页 运动,所以其速度增大,加速度减小。位移为正,质点 M 的速度沿 y 轴负方向,加速度 沿 y 轴负方向,所以加速度方向与速度方向相同,速度方向与位移方向相反,质点 M 的 加速度方向与对平衡位置的位移方向相反,故 CD 正确,AB 错误; 故选:CD。 【点评】由波动图象读出,求解周期,根据时间与周期的关系分析质点的振动情况,是 常见的问题,难度不大. 8.(3 分)如图甲所示,静止在水平地面的物块 A,受到水平向右的拉力 F 作用,F 与时间 t 的关系如图乙所示,设物块与地面的静摩擦力最大值 fm 与滑动摩擦力大小相等,则 (  ) A.0~t1 时间内 F 的功率逐渐增大 B.t2 时刻物块 A 的加速度最大 C.t2 时刻后物块 A 做反向运动 D.t3 时刻物块 A 的动能最大 【考点】1I:匀变速直线运动的图像;37:牛顿第二定律;63:功率、平均功率和瞬时 功率.菁优网版权所有 【专题】16:压轴题;52D:动能定理的应用专题. 【分析】当拉力大于最大静摩擦力时,物体开始运动;当物体受到的合力最大时,物体 的加速度最大;由动能定理可知,物体拉力做功最多时,物体获得的动能最大。 【解答】解:A、由图象可知,0~t1 时间内拉力 F 小于最大静摩擦力,物体静止,拉力 功率为零,故 A 错误; B、由图象可知,在 t2 时刻物块 A 受到的拉力最大,物块 A 受到的合力最大,由牛顿第 二定律可得, 此时物块 A 的加速度最大,故 B 正确; C、由图象可知在 t2~t3 时间内物体受到的合力与物块的速度方向相同,物块一直做加速 运动,故 C 错误; 第 7 页 共 16 页 D、由图象可知在 t1~t3 时间内,物块 A 受到的合力一直做正功,物体动能一直增加, 在 t3 时刻以后, 合力做负功。物块动能减小,因此在 t3 时刻物块动能最大,故 D 正确; 故选:BD。 【点评】根据图象找出力随时间变化的关系是正确解题的前提与关键;要掌握图象题的 解题思路。 二、非选择题 9.质量为 0.2kg 的小球竖直向下以 6m/s 的速度落至水平地面,再以 4m/s 的速度反向弹回, 取竖直向上为正方向,则小球与地面碰撞前后的动量变化为 2 kg•m/s,若小球与地面 的作用时间为 0.2s,则小球受到地面的平均作用力大小为 12 N(取 g=10m/s2)。 【考点】52:动量定理.菁优网版权所有 【专题】52F:动量定理应用专题. 【分析】取竖直向下方向为正方向,分别表示出碰地前后小球的动量,小球动量的变化 量等于末动量与初动量的差;代入动量定理的公式可以直接计算出小球受到地面的平均 作用力大小。 【解答】解:(1)取竖直向上方向为正方向,则小球与地面碰撞过程中动量的变化为:△ p=mv2﹣(﹣mv1)=0.2×(6+4)kg•m/s=2kg•m/s,方向竖直向上。 (2)代入动量定理的公式,得(F﹣mg)t=△P,代入数据求得:F=12N 故故答案为:2,12。 【点评】此题中动量是矢量,要规定正方向,用带正负呈的数值表示动量。动量变化量 也是矢量,同样要注意方向。 10.某同学用实验的方法探究影响单摆周期的因素。 ①他组装单摆时,在摆线上端的悬点处,用一块开有狭缝的橡皮夹牢摆线,再用铁架台 的铁夹将橡皮夹紧,如图 1 所示。这样做的目的是 AC (填字母代号)。 A.保证摆动过程中摆长不变 B.可使周期测量得更加准确 第 8 页 共 16 页 C.需要改变摆长时便于调节 D.保证摆球在同一竖直平面内摆动 ②他组装好单摆后在摆球自然悬垂的情况下,用毫米刻度尺从悬点量到摆球的最底端的 长度 L=0.9990m,再用游标卡尺测量摆球直径,结果如图 2 所示,则该摆球的直径为  12.1 mm,单摆摆长为 0.99295 m。 ③如图振动图象真实地描述了对摆长为 1m 的单摆进行周期测量的四种操作过程,图中 横坐标原点表示计时开始,A、B、C 均为 30 次全振动的图象,已知 sin5°=0.087,sin15 °=0.26,这四种操作过程合乎实验要求且误差最小的是 A (填字母代号)。 【考点】MK:探究单摆的周期与摆长的关系.菁优网版权所有 【专题】13:实验题;51C:单摆问题. 【分析】当摆角小于等于 5°时,我们认为小球做单摆运动,游标卡尺的示数等于主尺示 数与游标尺示数之和;摆长为悬点到球心的距离;对于测量误差可根据实验原理进行分 析; 【解答】解:(1)在摆线上端的悬点处,用一块开有狭缝的橡皮夹牢摆线,再用铁架台 的铁夹将橡皮夹紧,是为了防止动过程中摆长发生变化,如果需要改变摆长来探究摆长 与周期关系时,方便调节摆长,故 AC 正确, 故选 AC (2)游标卡尺示数为:d=12mm+1×0.1mm=12.1mm; 单摆摆长为 L=l 0.9990m﹣0.00605m=0.99295m (3)当摆角小于等于 5°时,我们认为小球做单摆运动,所以振幅约为:1×0.087m= 8.7cm,当小球摆到最低点开始计时,误差较小,测量周期时要让小球做 30﹣50 次全振 动,求平均值,所以 A 合乎实验要求且误差最小 故选 A 故答案为:①AC ②12.1 0.99295 ③A 【点评】掌握单摆的周期公式,从而求解加速度,摆长、周期等物理量之间的关系。单 摆的周期采用累积法测量可减小误差。对于测量误差可根据实验原理进行分析。 11.某同学在进行扩大电流表量程的实验时,需要知道电流表的满偏电流和内阻。他设计了 第 9 页 共 16 页 一个用标准电流表 G1 来校对待测电流表 G2 的满偏电流和测定 G2 内阻的电路,如图所示。 已知 G1 的量程略大于 G2 的量程,图中 R1 为滑动变阻器,R2 为电阻箱。该同学顺利完 成了这个实验。 ①实验过程包含以下步骤,其合理的顺序依次为 BEFADC (填步骤的字母代号); A.合上开关 S2 B.分别将 R1 和 R2 的阻值调至最大 C.记下 R2 的最终读数 D.反复调节 R1 和 R2 的阻值,使 G1 的示数仍为 I1,使 G2 的指针偏转到满刻度的一半, 此时 R2 的最终读数为 r E.合上开关 S1 F.调节 R1 使 G2 的指针偏转到满刻度,此时 G1 的示数为 I1,记下此时 G1 的示数 ②仅从实验设计原理上看,用上述方法得到的 G2 内阻的测量值与真实值相比 相等  (填“偏大”、“偏小”或“相等”); ③若要将 G2 的量程扩大为 I,并结合前述实验过程中测量的结果,写出须在 G2 上并联 的分流电阻 RS 的表达式,RS=   。 【考点】NA:把电流表改装成电压表.菁优网版权所有 【专题】13:实验题;535:恒定电流专题. 【分析】①用的是半偏法测电阻:实验时要先保证安全,故要先把各电阻调到最大值, 再把标准电流表单独较准与电表串联得到最大电流值,再用半偏法测其内阻。 ②从设计理论上看电流达到半偏时,要调节 R2 到两并联电阻相等时。 ③扩大量程并联电阻值为: ,【解答】解:①先把各电阻调到最大值,再把标准电流表单独较准与电表串联得到最大 电流值,再用半偏法测其内阻,由此得顺序为 BEFADC。   ②调节 RR2,电流达到半偏时,两并联支路电阻相等。 第 10 页 共 16 页   ③扩大量程要并联电阻分流,并联的电阻为: 故答案为:①BEFADC ②相等 ③ 【点评】考查实验过程的分析,明确安全的原则及实验原理。会求改装电流表的原量及 电阻的求解。 12.如图所示,水平地面上固定有高为 h 的平台,台面上有固定的光滑坡道,坡道顶端距台 面也为 h,坡道底端与台面相切.小球 A 从坡道顶端由静止开始滑下,到达水平光滑的 台面后与静止在台面上的小球 B 发生碰撞,并粘连在一起,共同沿台面滑行并从台面边 缘飞出,落地点与飞出点的水平距离恰好为台高的一半.两球均可视为质点,忽略空气 阻力,重力加速度为 g.求: (1)小球 A 刚滑至水平台面的速度 vA; (2)A、B 两球的质量之比 mA:mB. 【考点】43:平抛运动;53:动量守恒定律;65:动能定理.菁优网版权所有 【专题】52K:动量与动能定理或能的转化与守恒定律综合. 【分析】(1)由动能定理或机械能守恒定律可以求出小球 A 刚滑到水平台面的速度. (2)两小球碰撞过程中动量守恒,两小球离开平台后做平抛运动, 由动量守恒定律与平抛运动知识可以求出两球的速度之比. 【解答】解:(1)小球 A 下滑过程中,由动能定理可得: mAgh mAvA2﹣0,解得:vA ;(2)A、B 两球碰撞时动量守恒, 由动量守恒定律可得:mAvA=(mA+mB)v, 离开平台后,两球做平抛运动, 水平方向: vt, 第 11 页 共 16 页 竖直方向:h gt2, 解得:mA:mB=1:3; 答:(1)小球 A 刚滑至水平台面的速度 ;(2)A、B 两球的质量之比为 mA:mB=1:3. 【点评】分析清楚运动过程,应用动能定理、动量守恒定律与平抛运动特点即可正确解 题. 13.如图所示,一对光滑的平行金属导轨固定在同一水平面内,导轨间距 l=0.5m,左端接 有阻值 R=0.3Ω 的电阻,一质量 m=0.1kg,电阻 r=0.1Ω 的金属棒 MN 放置在导轨上, 整个装置置于竖直向上的匀强磁场中,磁场的磁感应强度 B=0.4T.棒在水平向右的外 力作用下,由静止开始以 a=2m/s2 的加速度做匀加速运动,当棒的位移 x=9m 时撤去外 力,棒继续运动一段距离后停下来,已知撤去外力前后回路中产生的焦耳热之比 Q1:Q2 =2:1.导轨足够长且电阻不计,棒在运动过程中始终与导轨垂直且两端与导轨保持良 好接触.求: (1)棒在匀加速运动过程中,通过电阻 R 的电荷量 q; (2)撤去外力后回路中产生的焦耳热 Q2; (3)外力做的功 WF. 【考点】1F:匀变速直线运动的速度与位移的关系;65:动能定理;BB:闭合电路的欧 姆定律;D8:法拉第电磁感应定律;D9:导体切割磁感线时的感应电动势;DD:电磁 感应中的能量转化.菁优网版权所有 【专题】16:压轴题;538:电磁感应——功能问题. 【分析】(1)根据运动学公式求出时间,根据电量的公式求解 (2)撤去外力后棒在安培力作用下做减速运动,安培力做负功先将棒的动能转化为电能, 再通过电流做功将电能转化为内能,所以焦耳热等于棒的动能减少. (3)根据动能定理求解. 第 12 页 共 16 页 【解答】解:(1)棒匀加速运动所用时间为 t,有: xt3s 根据法拉第电磁感应定律和闭合电路的欧姆定律求电路中产生的平均电流为: 1.5A 根据电流定义式有: t=4.5C q(2)撤去外力前棒做匀加速运动根据速度公式末速为: v=at=6m/s 撤去外力后棒在安培力作用下做减速运动,安培力做负功先将棒的动能转化为电能, 再通过电流做功将电能转化为内能,所以焦耳热等于棒的动能减少. Q2=△EK mv2=1.8J (3)根据题意在撤去外力前的焦耳热为: Q1=2Q2=3.6J 撤去外力前拉力做正功、安培力做负功(其绝对值等于焦耳热 Q1)、重力不做功共同使 棒的动能增大, 根据动能定理有: △EK=WF﹣Q1 则:WF=△EK+Q1=5.4J 答:(1)棒在匀加速运动过程中,通过电阻 R 的电荷量是 4.5 C; (2)撤去外力后回路中产生的焦耳热是 1.8J; (3)外力做的功是 5.4 J. 【点评】解决该题关键要分析物体的运动情况,清楚运动过程中不同形式的能量的转化, 知道运用动能定理求解变力做功. 14.对铀 235 的进一步研究在核能的开发和利用中具有重要意义。如图所示,质量为 m、电 第 13 页 共 16 页 荷量为 q 的铀 235 离子,从容器 A 下方的小孔 S1 不断飘入加速电场,其初速度可视为零, 然后经过小孔 S2 垂直于磁场方向进入磁感应强度为 B 的匀强磁场中,做半径为 R 的匀速 圆周运动。离子行进半个圆周后离开磁场并被收集,离开磁场时离子束的等效电流为 I.不考虑离子重力及离子间的相互作用。 (1)求加速电场的电压 U; (2)求出在离子被收集的过程中任意时间 t 内收集到离子的质量 M; (3)实际上加速电压的大小会在 U±△U 范围内微小变化。若容器 A 中有电荷量相同的 铀 235 和铀 238 两种离子,如前述情况它们经电场加速后进入磁场中会发生分离,为使 这两种离子在磁场中运动的轨迹不发生交叠, 应小于多少?(结果用百分数表示,保 留两位有效数字) 【考点】37:牛顿第二定律;4A:向心力;CI:带电粒子在匀强磁场中的运动.菁优网版权所有 【专题】16:压轴题;536:带电粒子在磁场中的运动专题. 【分析】(1)设离子经电场加速度时的速度为 v,由动能定理及向心力公式即可求解; (2)设在 t 时间内收集到的离子个数为 N,总电荷量为 Q,根据 Q=It、M=Nm,即可 求解 M; (3)根据向心力公式求出半径 R 的表达式,进而表示出铀 235 离子在磁场中最大半径和 铀 238 离子在磁场中最小半径,要使两种离子在磁场中运动的轨迹不发生交叠,则铀 235 离子在磁场中最大半径小于铀 238 离子在磁场中最小半径,进而即可求解。 【解答】解:(1)设离子经电场加速时的速度为 v,由动能定理得: qU ①粒子在磁场中做匀速圆周运动,洛伦兹力提供向心力,即:Bqv=m ②第 14 页 共 16 页 由①②解得:U ③(2)设在 t 时间内收集到的离子个数为 N,总电荷量为 Q,则 Q=It…④ N⑤M=Nm…⑥ 由④⑤⑥式解得:M (3)由①②式得: 设 m′为铀 238 离子的质量,由于电压在 U±△U 范围内微小变化,铀 235 离子在磁场 中最大半径为: 铀 238 离子在磁场中最小半径为: 这两种离子在磁场中运动的轨迹不发生交叠的条件为:Rmax<Rmin 即: 则有:m(U+△U)<m′(U﹣△U) 所以: 其中铀 235 离子质量 m=235u(u 为原子质量单位),其中铀 238 离子质量 m′=238u 故解得: 0.63% 答:(1)加速电场的电压为 ;(2)在离子被收集的过程中任意时间 t 内收集到离子的质量为 ;第 15 页 共 16 页 (3)为使这两种离子在磁场中运动的轨迹不发生交叠, 应小于0.63%。 【点评】本题主要考查了动能定理及向心力公式的直接应用,要求同学们知道要使两种 离子在磁场中运动的轨迹不发生交叠,则铀 235 离子在磁场中最大半径小于铀 238 离子 在磁场中最小半径,难度适中。 第 16 页 共 16 页

分享到 :
相关推荐

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注